1,265 research outputs found

    Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics

    Get PDF
    The design rules of transformation optics generally lead to spatially inhomogeneous and anisotropic impedance-matched magneto-dielectric material distributions for, e.g., free-space invisibility cloaks. Recently, simplified anisotropic non-magnetic free-space cloaks made of a locally uniaxial dielectric material (calcite) have been realized experimentally. In a two-dimensional setting and for in-plane polarized light propagating in this plane, the cloaking performance can still be perfect for light rays. However, for general views in three dimensions, various imperfections are expected. In this paper, we study two different purely dielectric uniaxial cylindrical free-space cloaks. For one, the optic axis is along the radial direction, for the other one it is along the azimuthal direction. The azimuthal uniaxial cloak has not been suggested previously to the best of our knowledge. We visualize the cloaking performance of both by calculating photorealistic images rendered by ray tracing. Following and complementing our previous ray-tracing work, we use an equation of motion directly derived from Fermats principle. The rendered images generally exhibit significant imperfections. This includes the obvious fact that cloaking does not work at all for horizontal or for ordinary linear polarization of light. Moreover, more subtle effects occur such as viewing-angle-dependent aberrations. However, we still find amazingly good cloaking performance for the purely dielectric azimuthal uniaxial cloak.Comment: 12 pages, 3 figures, journal pape

    Conformal carpet and grating cloaks

    Full text link
    We introduce a class of conformal versions of the previously introduced quasi-conformal carpet cloak, and show how to construct such conformal cloaks for different cloak shapes. Our method provides exact refractive-index profiles in closed mathematical form for the usual carpet cloak as well as for other shapes. By analyzing their asymptotic behavior, we find that the performance of finite-size cloaks becomes much better for metal shapes with zero average value, e.g., for gratings.Comment: added Ref. 12; added 2 figures; reformatte

    Optical phase cloaking of 700-nm light waves in the far field by a three-dimensional carpet cloak

    Full text link
    Transformation optics is a design tool that connects geometry of space and propagation of light. Invisibility cloaking is a corresponding benchmark example. Recent experiments at optical frequencies have demonstrated cloaking for the light amplitude ("ray cloaking"). In this Letter, we demonstrate far-field cloaking of the light phase ("wave cloaking") by interferometric microscope-imaging experiments on the previously introduced three-dimensional carpet cloak at 700-nm wavelength and for arbitrary polarization of light

    Scattering problems in elastodynamics

    Full text link
    In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof

    Experiments on transformation thermodynamics: Molding the flow of heat

    Full text link
    It has recently been shown theoretically that the time-dependent heat conduction equation is form-invariant under curvilinear coordinate transformations. Thus, in analogy to transformation optics, fictitious transformed space can be mapped onto (meta-)materials with spatially inhomogeneous and anisotropic heat-conductivity tensors in the laboratory space. On this basis, we design, fabricate, and characterize a micro-structured thermal cloak that molds the flow of heat around an object in a metal plate. This allows for transient protection of the object from heating, while maintaining the same downstream heat flow as without object and cloak.Comment: 10 pages, 4 figure

    Hall-effect sign-inversion in a realizable 3D metamaterial

    Get PDF
    In 2009, Briane and Milton proved mathematically the existence of three-dimensional isotropic metamaterials with a classical Hall coefficient which is negative with respect to that of all of the metamaterial constituents. Here, we significantly simplify their blueprint towards an architecture composed of only a single constituent material in vacuum/air, which can be seen as a special type of porosity. We show that the sign of the Hall voltage is determined by a separation parameter between adjacent tori. This qualitative behavior is robust even for only a small number of metamaterial unit cells. The combination of simplification and robustness brings experimental verifications of this striking sign-inversion into reach.Comment: 9 figures, 7 page

    Phonon band structures of three-dimensional pentamode metamaterials

    Full text link
    Three-dimensional pentamode metamaterials are artificial solids that approximately behave like liquids, which have vanishing shear modulus. Pentamodes have recently become experimental reality. Here, we calculate their phonon band structures for various parameters. Consistent with static continuum mechanics, we find that compression and shear waves exhibit phase velocities that can realistically be different by more than one order of magnitude. Interestingly, we also find frequency intervals with more than two octaves bandwidth in which pure single-mode behavior is obtained. Herein, exclusively compression waves exist due to a complete three-dimensional band gap for shear waves and, hence, no coupling to shear modes is possible. Such single-mode behavior might, e.g., be interesting for transformation-elastodynamics architectures.Comment: 5 figure
    corecore